MATH 54 - HINTS TO HOMEWORK 5

PEYAM TABRIZIAN

Here are a couple of hints to Homework 5! Enjoy! :)

Section 4.4: Coordinate Systems

Remember: It's easier to figure out \mathbf{x} once we know $[\mathrm{x}]_{\mathcal{B}}$ than the reverse. Also, remember that the change of coordinates matrix is just the matrix whose columns are the elements in \mathcal{B}.

It takes a code as its input and tells you which vector corresponds to that code. Its inverse matrix does what you usually want: It produces the coordinates of \mathbf{x}
4.4.27. Use the basis $\mathcal{B}=\left\{1, t, t^{2}, t^{3}\right\}$, and compute the coordinates of the 4 polynomials. Then the polynomials are linearly independent if and only if their corresponding vectors are linearly independent!

Section 4.5: The dimension of a vector space

4.5.1, 4.5.3, 4.5.7, 4.5.9. First express the subspace as the span of some vectors, and then use the following useful trick:

Useful trick: To find a basis of a collection of vectors, form the matrix A whose columns are the vectors, and all you need to do is to find a basis for $\operatorname{Col}(A)$. In particular, the dimension of the subspace is the dimension of $\operatorname{Col}(A)$ (which is the number of pivots).
4.5.26. I did this on Friday! Suppose $\mathcal{B}=\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \cdots \mathbf{v}_{\mathbf{n}}\right\}$ is a basis for H. What two things can you say about \mathcal{B} ? Then use the Basis theorem (Theorem 12).
4.5.27. Find an infinite linearly independent set in \mathbb{P}. For example, $\left\{1, x, x^{2} \ldots\right\}$ works!

SECTION 4.6: The rank of A matrix

Remember that the rank of A is just $\operatorname{dim}(\operatorname{Col}(A))$. It is also equal to $\operatorname{dim}(\operatorname{Row}(A))$ and to $\operatorname{Rank}\left(A^{T}\right)$ and to the number of pivots of A.
4.6.7, 4.6.9, 4.6.11, 4.6.13, 4.6.15. Use the equation $\operatorname{dim}(N u l(A))+\operatorname{Rank}(A)=n$. Also, $\operatorname{rank}(A)$ is largest when $\operatorname{Nul}(A)$ is smallest.

[^0]4.6.17.
(a) T
(b) \mathbf{F}
(c) \mathbf{T}
(d) \mathbf{F}
(e) \mathbf{F}
4.6.23. This question is just meant to confuse you with words! All that it says is if $\operatorname{dim}(N u l(A))=2$ and $n=8$, then what is $\operatorname{Row}(A)$?

4.6.33. I urge you to do 4.6 .32 before, it makes this much easier! The point is that if A has rank 1, then all its columns are multiples of the first column. In particular, let \mathbf{v} be the list of the coefficients. For example, if $A=\left[\begin{array}{lll}1 & -3 & 4 \\ 2 & -6 & 8\end{array}\right]$, then let $\mathbf{v}=\left[\begin{array}{c}1 \\ -3 \\ 4\end{array}\right]$, because the second column is -3 times the first one and the third column is 4 times the first one.

If the first column of A is zero, try the second column. If the second column is zero, try the third column. If neither of those hold, then A is the zero matrix, which does not have rank 1 .

Section 4.7: Change of basis

Remember: To change coordinates from \mathcal{B} to \mathcal{C}, just express the vectors in \mathcal{B} in terms of the vectors in \mathcal{C}
4.7.33. (ii), because P is just $\mathcal{W} \stackrel{P}{\leftarrow} \mathcal{U}$, so P goes from \mathcal{U} to \mathcal{V}.
4.7.11.
(a) \mathbf{F}
(b) \mathbf{T}
4.7.17. IGNORE! But if you do 4.7 .17 and 4.7 .18 , you'll have a completely different and awesome view of calculus and linear algebra!

[^0]: Date: Friday, September 30th, 2011.

